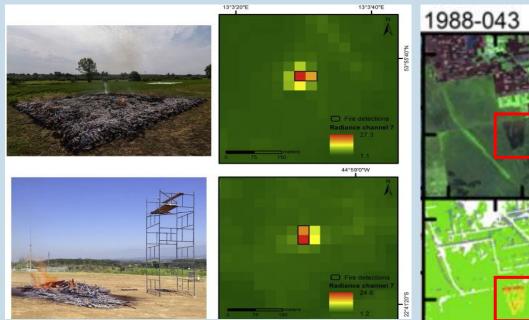


Fire into the Future: Utilizing Geospatial Technology to Identify and Categorize Fire in the Southeast

Dr. Holly Nowell, Director of the Geospatial Lab and Assistant Scientist hnowell@talltimbers.org


Fires are prevalent in the Southeast US

Southeast US contains half of fire area of the contiguous US Florida burns 10% of US fire area

(Melvin, 2015; Short, 2014)

Satellites are critical for quantifying fire

Active fire detections Burned area/scar detections



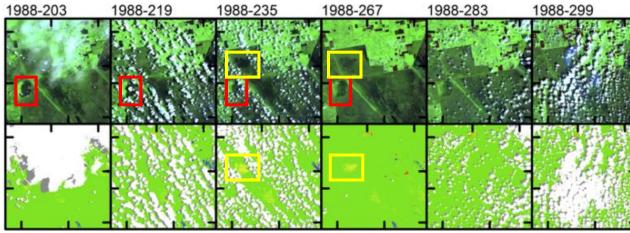
Schroeder et al., 2015

Fuel consumption in fires, 1997-2020 mean (GFED4s, van der Werf et al., 2017) Southeast

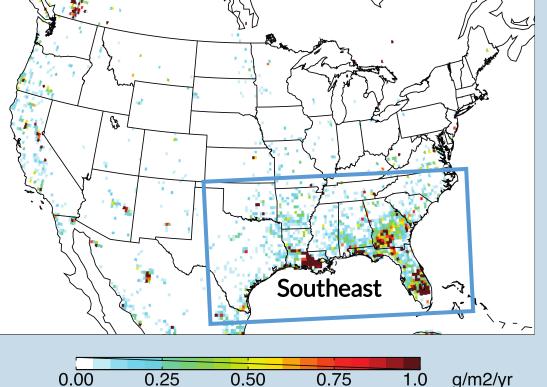
Fires are prevalent in the Southeast US

Southeast US contains half of fire area of the contiguous US

Florida burns 10% of US fire area (Melvin, 2015; Short, 2014)


Satellites are critical for quantifying fire

Active fire detections


Burned area/scar detections

Regionally specific challenges:

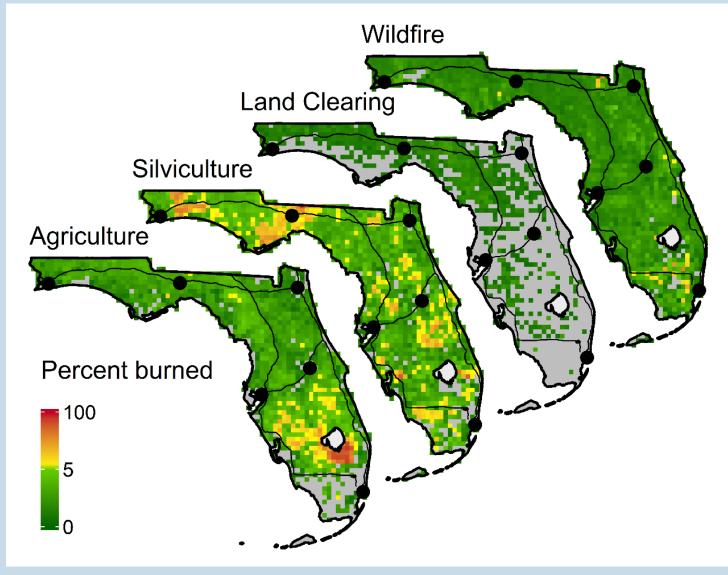
- Prescribed fires are common typically smaller, less severe relative to wildfires
- Clouds and canopy block satellite views
- Wet and warm climate limited clear-sky observations and rapid post-fire recovery

Fuel consumption in fires, 1997-2020 mean (GFED4s, van der Werf et al., 2017)

How can we measure fire across the Southeast US?

Hawbaker et al., 2017

Atlas of Florida fires, 2004-2015


We combined government reports...

- Prescribed fire permits (Florida Forest Service)
- Wildfire FPA FOD (Short et al., 2014, 2017)

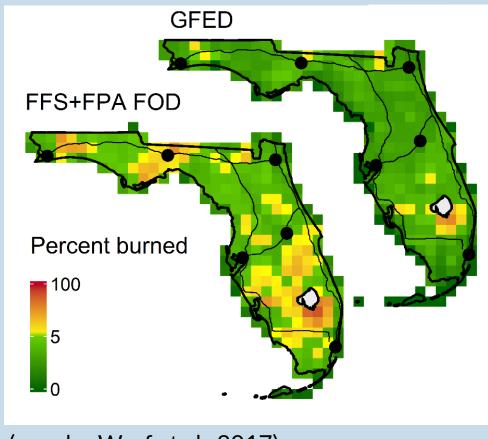
Annual fire activity: 25,000 fires 987,000 ha (7% of land area)

56% silviculture + land clearing36% agriculture8% wildfire

Prescribed fires dominate

Evaluation of satellite fire products

Known limitations


- Small size (most under 20 ha)
- Short duration (hours or less)
- Low intensity
- Hidden by frequent clouds, tree canopy
- Rapid vegetation regrowth in humid climate

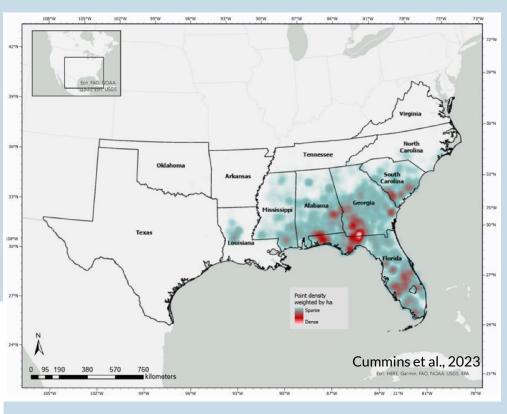
Overall, 70-80% of Florida fire area is undetected in four satellite products: GFED4s/MODIS, BAECV1.1/Landsat, HMS, HMS/NEI Agriculture

Consistent with the high end of past literature (40-80% undetected; Hu et al., 2016; Huang et al., 2018)

Satellites vs. Government records

(van der Werf et al., 2017)

Nowell et al., 2018 GRL


Ground-based fire products

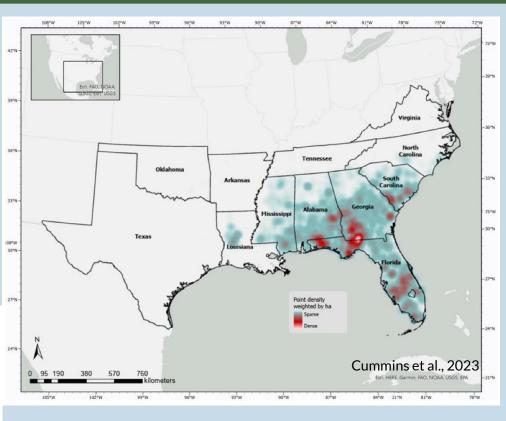
Ground-based products across the Southeast US are not all the same

- Inconsistent rules between states
- Variable time series
- Point-based data
- Permit ≠ burned

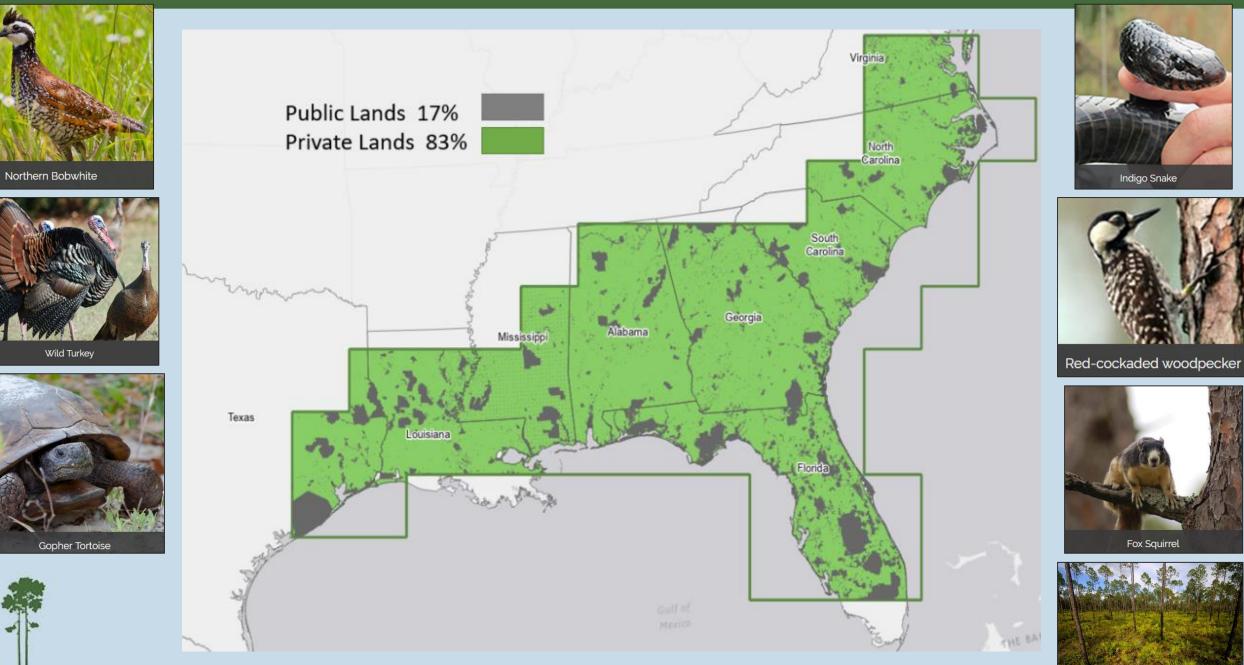
State or Federal Agency	Years	Locational Data	Type of Burn System		
Alabama Forestry Commission	2011-2021	X,Y	permit (required)		
Arkansas Forestry Commission	2011-2021	X,Y	voluntary		
Florida Forest Service	2010-2020	X,Y	permit (required)		
Georgia Forestry Commission	2010-2020	X,Y; geocoding; county centroid	permit (required)		
Fort Moore Military Base (GA)	2010-2020	X,Y	collected internally		
Louisiana Department of Agriculture and Forestry	2010-2020	X,Y	voluntary		
Kisatchie National Forest (LA)	2010-2020	X,Y	collected internally		
Mississippi Forestry Commission	2010-2020	X,Y	permit (required)		
North Carolina Forest Service	2014-2021	X,Y	permit (required)		
Oklahoma Forestry Services	2015-2021	X,Y	notification (required)		
South Carolina Forestry Commission	2010-2020	X,Y	notification (required)		
			permit system		
Tennessee Division of Forestry	2012-2020	geocoding	(required		
		0	October15–May 15)		
Texas A&M Forest Service	2017-2019	X,Y	voluntary		
Virginia Department of Forestry	2010-2020	X,Y	voluntary		

(Cummins et al., 2023)

Critical Need: Improved data and tools for tracking fire trends and patterns across public and private lands to help landowners prioritize landscapes for restoration and conservation through the use of prescribed fire

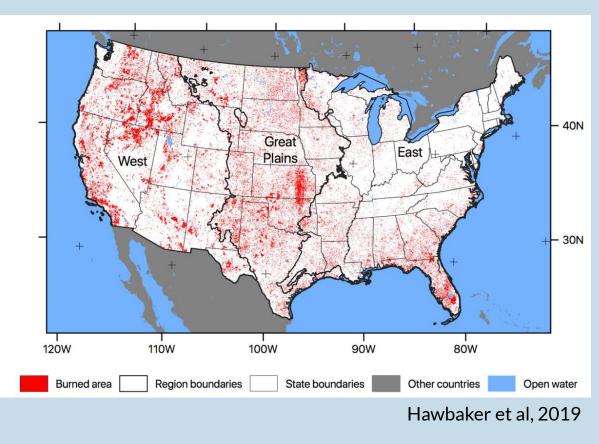

Ground-based fire products

Ground-based products across the Southeast US are not all the same

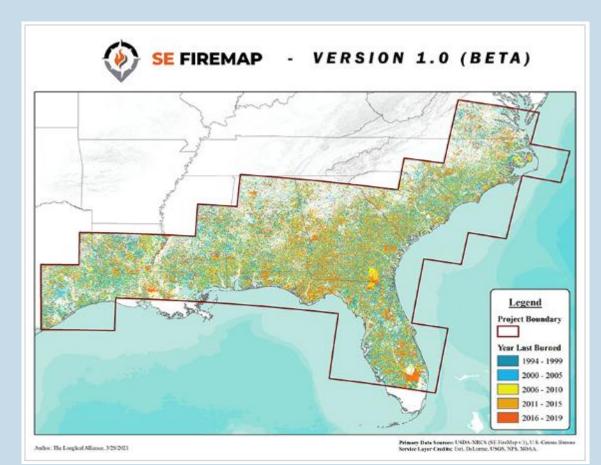

- Inconsistent rules between states
- Variable time series
- Point-based data
- Permit ≠ burned

State or Federal Agency	Years	Locational Data	Type of Burn System		
Alabama Forestry Commission	2011-2021	X,Y	permit (required)		
Arkansas Forestry Commission	2011-2021	X,Y	voluntary		
Florida Forest Service	2010-2020	X,Y	permit (required)		
Georgia Forestry Commission	2010-2020	X,Y; geocoding; county centroid	permit (required)		
Fort Moore Military Base (GA)	2010-2020	X,Y	collected internally		
Louisiana Department of Agriculture and Forestry	2010-2020	X,Y	voluntary		
Kisatchie National Forest (LA)	2010-2020	X,Y	collected internally		
Mississippi Forestry Commission	2010-2020	X,Y	permit (required)		
North Carolina Forest Service	2014-2021	X,Y	permit (required)		
Oklahoma Forestry Services	2015-2021	X,Y	notification (required)		
South Carolina Forestry Commission	2010-2020	X,Y	notification (required)		
			permit system		
Tennessee Division of Forestry	2012-2020	geocoding	(required		
		0 0	October15–May 15)		
Texas A&M Forest Service	2017-2019	X,Y	voluntary		
Virginia Department of Forestry	2010-2020	X,Y	voluntary		

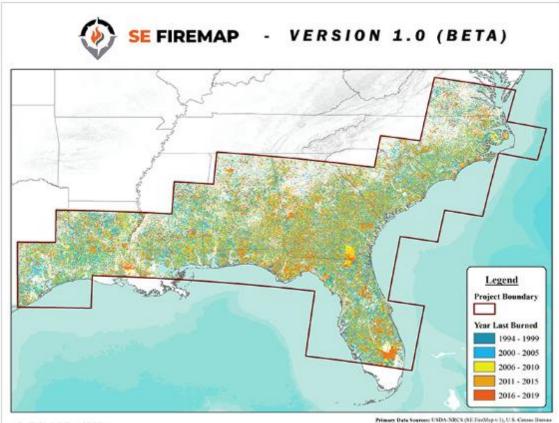
(Cummins et al., 2023)


Critical Need: Improved data and tools for tracking fire trends and patterns across public and *private* lands to help landowners prioritize landscapes for restoration and conservation through the use of prescribed fire

© Mark Conlin

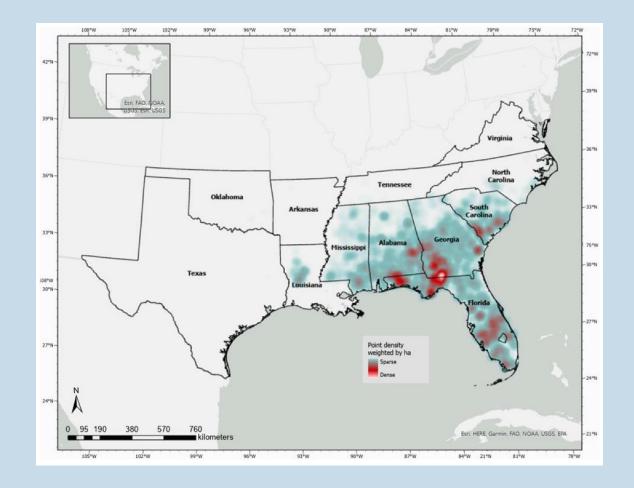

Creation of the Southeast FireMap

- **1.** *Meetings, workshops, webinars* to convene partners and experts to discuss the current data collection, technologies and/or mapping being conducted in the Southeast and elsewhere
- 2. A report describing existing relevant mapping efforts, current data collection methods and technologies, including a brief assessment of their strengths and weaknesses
- *Clear, detailed recommendations* for building a scalable Southeast FireMap, a database that depicts fire occurrences in the southeastern U.S. through a web interface that supports simple queries, reports and downloads

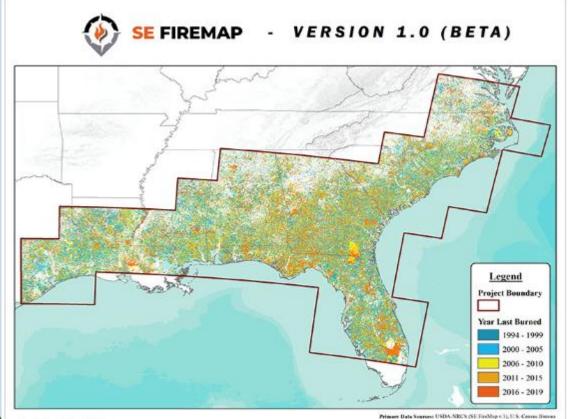


Creation of the Southeast FireMap

- **1.** *Meetings, workshops, webinars* to convene partners and experts to discuss the current data collection, technologies and/or mapping being conducted in the Southeast and elsewhere
- 2. A report describing existing relevant mapping efforts, current data collection methods and technologies, including a brief assessment of their strengths and weaknesses
- *Clear, detailed recommendations* for building a scalable Southeast FireMap, a database that depicts fire occurrences in the southeastern U.S. through a web interface that supports simple queries, reports and downloads



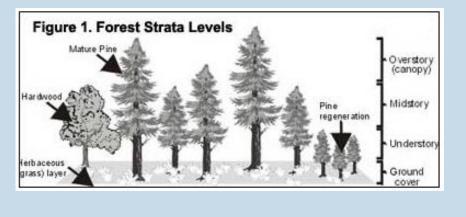
Southeast FireMap project



Author: The Longleof Allinson, 3/29/2021

Primary Data Sourcess USDA NRCS (SE Funding V.I), U.S. Cennis In Service Layer Creditic Erri, DeLottie, USOS, NPS, NDAA.

Fire history metrics



Author: The Longkof Allinson, 3/29/2021

Primary Data Sourcess USDA-NRCS (SE Fundary V.), U.S. Centra Barcan Service Laver Creditic Esti, DeLorne, USOS, NPS, NDAA.

- Fire Frequency refers to the number of times a specific location has burned in the period of record (or for a given period of interest if a subset of total fire record)
- Time Since Previous Fire is the measure of time from a specific date back in time to the last date of a detected or known fire. Units can be months, days, or years. In the database, it is reported as the number of years from "present" to the last identifiable burn
- Year Last Burned is the year of the last detected fire in a location
- Longest Fire Free Interval is the period between two consecutive fires in a given location. In places where more than two fires have burned throughout time

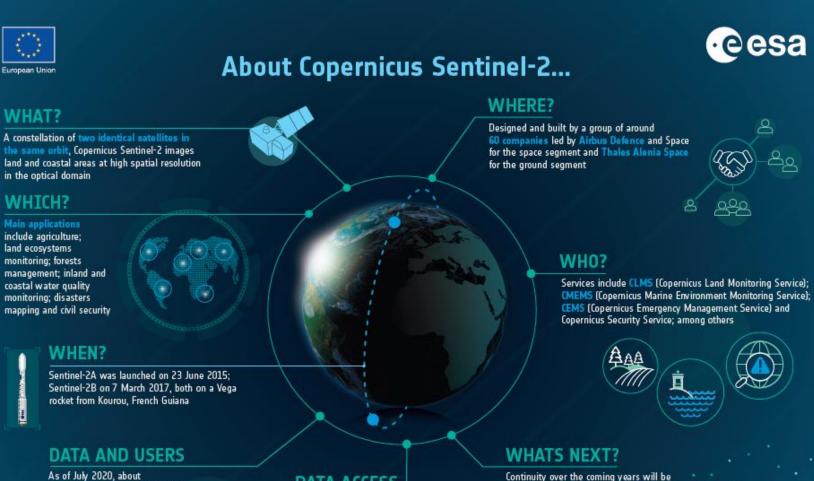
Ability to "visualize" the landscape using FHM

Phase II: Southeast FireMap Project Components

- 1. Southeast FireMap data delivery and platform analysis
- 2. Landsat BA product support
- 3. Research
 - Assessing regional patterns and impacts of burning
 - Incorporating harmonized Landsat Sentinel-2 data into BA product
 - Improving the characterization of uncertainty in the BA product
 - Adding burn severity as an attribute to the Landsat BA product

Phase II: Southeast FireMap Project Components

- 1. Southeast FireMap data delivery and platform analysis
- 2. Landsat BA product support
- 3. Research
 - Assessing regional patterns and impacts of burning
 - Incorporating harmonized Landsat Sentinel-2 data into BA product
 - Improving the characterization of uncertainty in the BA product
 - Adding burn severity as an attribute to the Landsat BA product



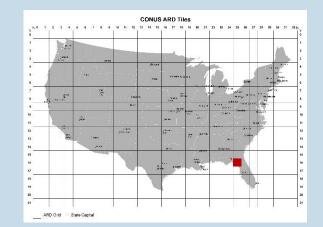
Regional patterns of burning by decade

- Over the Southeast FireMap extent, burning of unique areas decreased slightly by 2% (-96,000 ha)
- Total burning (black dot) decreased overall for most states
- Most saw increase in unique public land burning and a decrease in private land burning

Harmonized Landsat – Sentinel 2 data

As of July 2020, about 20 million products have been generated and made available for download, culminating a total of 10 Petabytes

DATA ACCESS https://scihub.copernicus.eu

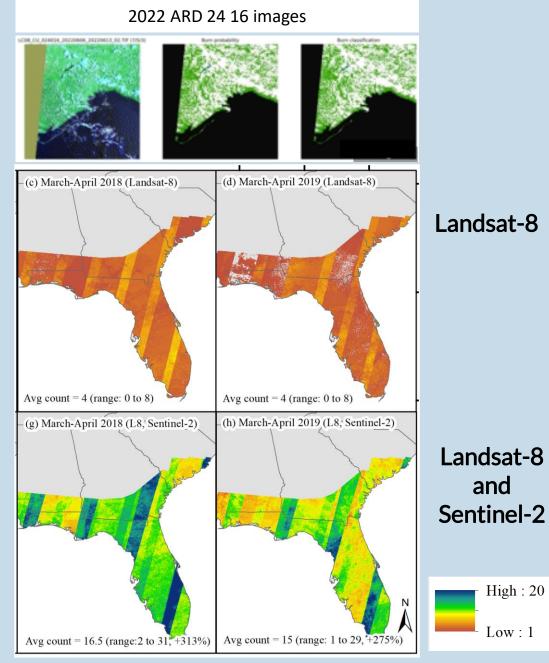

ensured by the launch of additional satellites (Sentinel-2C and Sentinel-2D). Furthermore, a new generation of Sentinel-2 satellites is being prepared, to take up the

relay from the first generation

Harmonized Landsat – Sentinel 2 data

Incorporating Sentinel-2 data increased observation counts from 43-300% depending on year

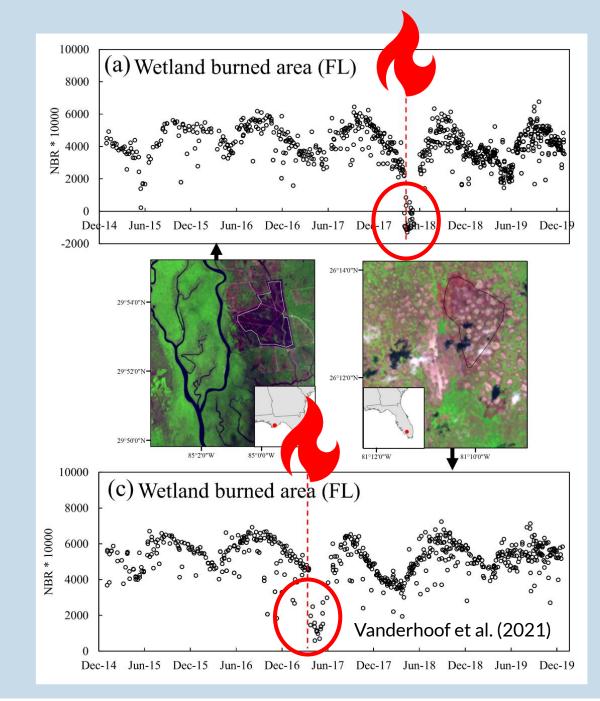
HLS image counts


Platform	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Total
Landsat	12	27	20	29	34	25	23	30	26	34	260
Sentinel-2			1	15	24	53	57	45	59	30	284
Grand Total	12	27	21	44	58	78	80	75	85	64	544

HLS sample counts (burned samples)

Platform	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	Total
Landsat					68	69	0	0	141		278
Sentinel-2					53	426	184	323	286		1272
Grand Total					121	495	184	323	427		

Known Limitations: Cloud Cover


- Southeast is cloudier than other areas
- Short detection window
- Addressing this by incorporating the European Space Agency's Sentinel Satellite data

Vanderhoof et al. (2021)

Known Limitations: Rapid Green - Up

- Fire adapted species quickly re-vegetate
- There is a short window in which fires can be detected

Conclusions

- Fires can be difficult to detect in the Southeast US
- Southeast FireMap based off of Landsat BA provides best satellite solution for mapping fires across the Southeast US
 - Spatial footprint
 - Uniform across the entire area
 - Fire history metrics
- Allows for in-depth analysis of fire change across the landscape
- Inclusion of Sentinel-2 satellite will greatly increase detections
- Southeast FireMap Phase II is currently on-going and we are soliciting feedback

References

- link to SE FireMap: https://www.landscapepartnership.org/key-issues/wildland-fire/fire-mapping/regional-fire-mapping/se-firemap
- Cummins, K.; Noble, J.; Varner, J.M.; Robertson, K.M.; Hiers, J.K.; Nowell, H.K.; Simonson, E. The Southeastern U.S. Prescribed Fire Permit Database: Hot Spots and Hot Moments in Prescribed Fire across the Southeastern U.S.A. Fire 2023, 6, 372. https://doi.org/10.3390/fire6100372
- Hawbaker, T. J., Vanderhoof, M. K., Schmidt, G. L., Beal, Y. J., Picotte, J. J., Takacs, J. D., et al. (2019). The Landsat Burned Area algorithm and products for the conterminous United States. Remote Sensing of Environment, 244(September 2019), 111801. https://doi.org/10.1016/j.rse.2020.111801
- Hawbaker, T. J., Vanderhoof, M. K., Beal, Y. J., Takacs, J. D., Schmidt, G. L., Falgout, J. T., et al. (2017). Mapping burned areas using dense timeseries of Landsat data. Remote Sensing of Environment, 198, 504–522. https://doi.org/10.1016/j.rse.2017.06.027
- Hu, X., Yu, C., Tian, D., Ruminski, M., Robertson, K., Waller, L. A., & Liu, Y. (2016). Comparison of the hazard mapping system (HMS) fire product to ground-based fire records in Georgia, USA. Journal of Geophysical Research: Atmospheres, 121, 2901–2910. https://doi.org/10.1002/2015JD024448
- Huang, R., Zhang, X., Chan, D., Kondragunta, S., Russell, A. G., & Odman, M. T. (2018). Burned area comparisons between prescribed burning permits in southeastern United States and two satellite-derived products. Journal of Geophysical Research: Atmospheres, 123, 4746–4757. https://doi.org/10.1029/2017JD028217
- Nowell, H. K., Holmes, C. D., Robertson, K., Teske, C., & Hiers, J. K. (2018). A new picture of fire extent, variability, and drought interaction in prescribed fire landscapes: Insights from Florida government records. Geophysical Research Letters, 45, 7874–7884. https:// doi.org/10.1029/2018GL078679
- Melvin, M. A. (2015). 2015 National Prescribed Fire Use Survey Report. Retrieved from http://www.stateforesters.org/2015-national-prescribed-fireuse-survey-report
- Schroeder, W., Oliva, P., Giglio, L., Quayle, B., Lorenz, E., & Morelli, F. (2016). Active fire detection using Landsat-8/OLI data. Remote Sensing of Environment, 185, 210–220. https://doi.org/10.1016/j.rse.2015.08.032
- Short, K. C. (2014). A spatial database of wildfires in the United States, 1992–2011. Earth System Science Data, 6(1), 1–27. https://doi.org/ 10.5194/essd-6-1-2014
- van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., et al. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data Discussions, 1–43. <u>https://doi.org/10.5194/essd-2016-62</u>
- Vanderhoof, M. K., Hawbaker, T. J., Teske, C., Ku, A., Noble, J., & Picotte, J. (2021). Mapping Wetland Burned Area from Sentinel-2 across the Southeastern United States and Its Contributions Relative to Landsat-8 (2016–2019). Fire, 4(3), 52. https://doi.org/10.3390/fire4030052